Sinus Meridiani (Hematite) Landing Site for 2003 MER

Phil Christensen & The TES Science Team

Presentation to NAI MWG by Vicky Hamilton 8 January 2001

Overview

- Key Questions
- Site Selection Considerations
 - Engineering Constraints
 - Instrumental Capabilities
- Sinus Meridiani Hematite
- Proposed Mechanisms of Formation
- Conclusions

Key Questions

- Focus on water & sites of exobiological interest -- where, when, how long?
 - Existence of aqueous or hydrothermal deposits
 - Existence/location of carbonates
 - Composition and abundance of weathering products

Site Selection Considerations

- Engineering constraints
- Instrumental capabilities
 - PanCam
 - Mini-TES spectrometer
 - Mossbauer spectrometer
 - Alpha Proton X-ray spectrometer
 - Microscopic Imager

Engineering Constraints

- Latitude
 - MER-A -15° to +5°
 - MER-B -10° to +10° (new)
- MOLA elevation < -1.3 km</p>
- Slope < 15°</p>
- Rock abundance < 20%</p>
- FCI < 125-165 J m ⁻² s ^{-1/2} k⁻¹
- No high albedo sites

Instrument Capabilities

- Rock, coating, and soil analyses
- Optimal conditions for all instruments favor low dust
 - Spectral discrimination
 - Surface texture discrimination
- → Sinus Meridiani site has known surface materials useful for *in situ* "calibration" of <u>both</u> landed instrument packages (Christensen et al. [2000])
 - Crystalline hematite
 - Basaltic material

Sinus Meridiani Hematite

- Unique deposit of crystalline hematite
 - Coarse-grained (10-100's µm)
 - Not nanophase
- Covers ~10-15% of surface
- Excellent correlation of hematite with smooth, layered, friable unit
 - Probable sedimentary origin
 - MOC images confirm layering in smooth unit

Hematite Formation Mechanisms

- I) Chemical precipitation extensive nearsurface water
 - 1) Precipitation from ambient, Fe-rich water (oxide iron formations)
 - 2) Precipitation from hydrothermal fluids
 - 3) Low-temperature dissolution and precipitation through mobile groundwater leaching
 - 4) Surface weathering and coatings
- II) Thermal oxidation of magnetite-rich lava

Hematite Summary

- Crystalline hematite in Sinus Meridiani
 occurs *in situ* in a sedimentary rock formation
 composed primarily of basaltic material with
 10-15% hematite
- Hematite formed by precipitation from aqueous fluids under either ambient or hydrothermal conditions
- Evidence for aqueous mineralization indicates long-term stability of near-surface water on early Mars

Conclusions

- Sinus Meridiani sites meet engineering constraints
- Unique mineralization in Sinus Meridiani presents intriguing, water-linked environment for further investigation
- Current knowledge of Sinus Meridiani mineralogy presents a rare opportunity for MER instruments on both rovers

