Hydrous silicates in terrestrial impactites: Implications for the formation of phyllosilicates on Mars

Livio Tornabene¹, Gordon Osinski² & Alfred McEwen¹

¹LPL, Univ. of Arizona, Tucson, AZ. USA, ²Canadian Space Agency, Saint-Hubert, QC, CD.

CTX of fresh 7 km D crater in Hesperia Planum
Hydrated silicate phases on Mars: What do they tell us?

- OMEGA and CRISM-detected phyllosilicates and hydrous glass (silica) occur in the ancient heavily-cratered and dissected Noachian terrains
 - Suggestion: Early Mars had a thicker atmosphere, was warmer / wetter and more habitable
 - Do phyllosilicates = abundant long term water?

- Mars may have been cold/dry throughout much of its history w/ water only sporadically (intensely) occurring at or near the surface [e.g., Segura et al., 2002, 2008 in press - JGR]

- Is it possible to form such hydrous phases under transient water conditions? … YES.

- Clays (particularly Fe-Mg smectites) are very common:
 - In IDPs and carbonaceous chondrites [e.g., Nouguchi et al., 2002; McSween, 1999; Tomeoka, 1990]
 - In impactites recovered from terrestrial impact structures [e.g., Naumov, 2005; Osinski, 2005]
 - Causal relationship - Heavy bombardment and Noachian clays?

- Multiple geologic setting/mechanisms for phyllo-bearing sites need to considered to truly address water availability / habitability issues

Megabreccia, Holden Crater
Hydrous silicates in terrestrial impact structures

- A study of 62 impact structures (D ~1.8 -250 km) and a detailed petrographic/SEM analysis of impactites indicate [Naumov, 2005; Osinski, 2005]:
 - Phyllosilicates are abundant in terrestrial impactites (up to 70 vol% of groundmass in Ries impactites)
 - Especially within melt-bearing impactites (interior and exterior)
 - Hydrous silica melt/glasses (volatile-rich target)
 - Typically rich in other common elements (e.g., Fe, Al, Mg, Na, K) and w/ up to 24 wt% H₂O [Osinski et al., 2004, Harris et al., 2007 LPSC]
 - Terrestrial impactite phyllosilicates formed predominately by:
 - Hydrothermal
 - Post-impact fluids and heat (impact + melt + geotherm) circulating and interacting with impactites or surrounding country rocks
 - Devitrification (and autometamorphism)
 - Direct, solid-state transformation unstable hydrous melt/glasses transformed by their composition and water content (autometamorphism) [Osinski et al., 2004; McPhie et al., 1993]
 - Does not require post-impact water rock interactions to form clays

Figure 2. from Osinski, 2005
Hydrous silicates on Mars and in Terrestrial impact structures

[Mustard et al., 2008 - Nature, and Ehlmann et al., 2008 - LPSC]

- **Common phyllosilicates on Mars include:** Smectites
 - Fe-Mg-rich (most ubiquitous on Mars)
 - Probably nontronite/saponite - dispersed in heavily cratered S. Highlands - All MSL sites
 - Al-rich
 - Probably montmorillonite - S. Meridiani, Mawrth
 - Hydrous silica/glasses - ubiquitous in S. Highlands - Most MSL sites?
 - Chlorites - Nili, Tyrhenna, Vallis Marineris
 - Zeolites (analcime?) - Nili
 - Iilitie/Muscovite (mixed-layer?) - Nili

[Naumov, 2005 and Osinski, 2005]

- **Common phyllosilicates in terrestrial craters: Smectites**
 - Fe-Mg-rich (most common)
 - Saponite/notronite
 - Al-rich
 - Montmorillonite
 - Hydrous melt/glasses (very common throughout structures)
 - Chlorites (commonly in perph. of central uplift)
 - Various zeolites associated with some calcite and pyrite
 - Na-rich and Ca-rich (e.g., analcime, laumontite, chabazite)
 - Some Illite and mixed-layer clays (typically smectite-chlorite)
Devitrification of melt-bearing breccias

- SEM studies of the groundmass of melt-bearing impactites from Ries:
 - Groundmass comprised of a series of impact melts/glasses varying in composition and H$_2$O content
 - Devitrified melts = mostly smectite clays
 - Intricate flow-banding, melt-bleb/globules & immiscibility textures
 - Quench crystallites present (Plagioclase, garnet and pyroxene)
 - Vesicles

SEM of Ries impact-melt bearing breccia - Osinski et al., 2004
Impact structure hydrothermal alteration

- Synthesis of 62 impact sites: Bulk alteration occurs ~50-350°C; pH ~6-8; low P_{CO_2} [Naumov, 2005]
 - Most long lived and deep-seated (kms) alteration stage of hydrothermal alt. (e.g., Siljan)
 - Clays-zeolite-calcite-pyrite assemblage predominates & overprints most higher T alteration phases

- Hydrothermal clays can be distinguished from devitrification/autometamorphic clays:
 - In veins and has open space-filling textures
 - Cross-cutting groundmass / devitrified clays
 - Coarse xrys. platy habit
 - Clays more homogenous in composition (devitrified clays very heterogeneous) [Osinski et al., 2004; Dence et al., 1974]

- Example: Ries (D ~24 km; ~14.5 Ma) melt-bearing impactites [Osinski et al., 2004]
 - ~10-15% Hydrothermal
 - up to 50% Devitrified melt/glass

Devitrification/autometamorphism could be more prevalent then hydrothermal as a clay-forming mechanism with respect to large impacts into volatile-rich targets!
Hydrous silicate impact melts on Mars?

• D/H ratio suggests more water in the past [Carr, 2007]

• Presence of a global-scale cryosphere [Clifford, 1993; Boyton et al., 2002]

• >90% of ejecta-bearing Martian craters (>5 km) possess layered ejecta [Barlow, 2007]
 – Impact into a volatile-rich target (Amazonian - Noachian?) [e.g., Carr et al., 1977]

• Recent H and X work on fresh and well-preserved craters
 – Possible impact-melt bearing bodies
 – Volatiles have played an important role during impact process [McEwen et al., 2007; Tornabene et al., 2007, 2008]

Large & numerous impacts+volatile-rich crust = hydrated silicates
Impact Melting

- E from hypervelocity impacts (impacting bodies are slower for Mars, but...)

- Consequence of high E - shock: Fracturing, pulverization, **melting** and vaporization of target

- Peak shock, hence melting, is dependant on total energy yield

- Whereas, size of a crater becomes dependant on gravity-scaling

- Excavation flow crosses pressure contours
 - Large craters: prodigious ejected melt volumes
 - Melt-scaling may explain phyllosilicate bias to Noachian
 - Small craters: less melt minimal ejected

![Diagram showing impact melting and crater formation](image)
An approximation for Basin ejecta thickness vs. radial distance for a 1000-km sized basin

- Basins can create meters - kilometers thick ejecta deposits

Melosh, 1989
- Large-scale phyllosilicate bedrock and outcrops near basins make sense
- Exposure and redistribution by smaller impacts important locally
- Impact-melt distribution from largest impacts could be global (e.g., Chicxulub) [Alvarez, 1997]
Megabreccias in the Nili Fossae

Suggests basin ejecta (melt-rich) from nearby Isidis Basin

Correlates w/ Fe-Mg smectite-rich units - suggests a possible impact-origin for some Nili Fossae hydrated silicates is likely

See Poster by McEwen et al. - this conference
Habitability and preservation - Good News!

- Hydrothermal oasis - up to 10^5 yrs for large craters, but longer for basins (up to 10^7) [Abramov and Kring, 2004]
 - Longer lived than paleolakes?

- Impacts also increase rock porosity and fracturing for cryptoendolithic habitats [Cockell et al., 2005]

- Studies of melt-bearing impactites
 - Suggest high survivability of organics in “cold” clasts within melt-bearing breccias [Lindgren et al., 2006 LPSC]
 - Preservation and transfer of “organic signatures” to impactite-derived seds [Parnell et al., 2005]
 - Both lacustrine and wind-blown deposits

Haughton melt-bearing “breccia”
MSL site summary - Likelihood of some impact-generated hydrated silicates

- Eroded, transported and deposited impact-generated hydrated silicates formed during the Noachian (i.e., a terrain dominated by altered crater/basin ejecta) probably important
- Nili Fossae - megabreccia + Fe-Mg smectites, proximity to Isidis Basin
- S. Meridiani - Hydrated silicates possibly outcropping in eroded Miyamoto ejecta?
- Miyamoto - multiple channels suggesting eroded and transported materials from Noachian highlands
- Holden - Uzboi Valles - same as above; also near Argyre Basin
- Eberswalde - same as above
- Mawrth -?
- Gale -?

- Take home: Martian hydrated silicates do not necessarily require long-term water
 - Large & numerous impacts+volatile-rich crust = hydrated silicates

- Final thought: If we land in a Noachian terrain - impactites will certainly be likely surface components - warrants further consideration and study of them as analogs