Impact crater processes and MSL landing sites – Potential for impact hydrothermal deposits associated with a) megabreccia and b) thick hot ejecta? Potential for crater lake sediments?

Horton Newsom, Jim Bell, Dawn Sumner, John Spray, Shawn Wright

Mars data and cratering information - thanks to numerous contributors to the previous landing site meetings and LSWG activities, including David Kring, Michelle Minitti, Peter Schultz
Landing site craters – Large!

- Gale Crater – 155 km diameter
- Holden Crater – 154 km
- Oyama Crater (Mawrth) – 107 km
- Eberswalde Crater – 65 km

Terrestrial analogs

- Chicxulub, Mexico – 150 km diameter
 - Impact melt-bearing breccias in ejecta with hydrothermal clay deposits
- Vredefort, S.A. – 160 km
 - Deeply eroded with pseudotachylyte dikes
- Manicouagan, Canada – 80 km
 - Megabreccia, and hydrothermal alteration - smectite etc.
- Ries, Germany – 24 km
 - Melt-bearing breccias in ejecta (suevite) – limited hydrothermal alteration
Evaluation of support for biosignature formation, concentration, and preservation (FCP) for impact-related rocks

Impacts provide heat that can linger for 1000’s to 10,000’s years (more?)
→ Water, chemical and thermal energy flux

Pre-Impact Rocks

IMPACT

Post-impact

- Impact-generated hydrothermal system (surface and subsurface)
 - High

- Impact-generated crater lake
 - High

- Impact-related fluvial environments
 - Low

- Impact-independent sediments accumulated in catchment
 - Low

- Impact-independent diagenetic conditions (e.g. pedogenesis)
 - Low

MSL Access

- M? H E
 - High

- G? H? E?
 - High

Support for Biosignature FCP

- All

Dependent on depositional environment?
Clays - Impact hydrothermal origin?

- **Gale**
 - Ellipse – Fe/Mg clay (*possible hydrothermal debris from crater wall*)
 - Mound – Fe-rich smectite clay (unlikely to be impact related)

- **Mawrth**
 - Ellipse – Fe-rich smectite clay, Al-rich clay (*possible hydrothermal alteration from eroded Oyama impact melt layer*)

- **Holden**
 - Crater rim wall and landing site fan – Fe/Mg clay and (*mixed layer clays suggest possible impact hydrothermal materials*)
 - Ellipse - Fe/Mg clay (*possible hydrothermal debris from crater wall and megabreccia*)
 - Go-to sites – Fe/Mg clay, Megabreccia

- **Eberswalde**
 - Crater rim wall above L.S. fan – Fe/Mg clay
 - Ellipse - Fe/Mg clay (*possible hydrothermal deposits from crater wall or from megabreccia*)
 - Go-to delta - Fe/Mg clay (*mixed layer clays suggest possible transported impact hydrothermal materials*)
Impact generated crater lake deposits?

- Early post-impact lake deposits with connections to deep aquifers and impact hydrothermal systems
 - Eberswalde:
 - Ellipse (layered material?) Go-to sites (base of delta?)
 - Holden:
 - Ellipse and go-to sites (layered material)
 - Gale:
 - Northern ellipse (fractured and cemented layers)
 - Go-to sites (layered material at base of mound?)
 - Mawrth:
 - None
Ejecta blankets and impact melt

- Large impact craters and basins
 - Proximal - impact melt sheets covered with melt-bearing breccia (e.g., Sudbury), substantial heat for hydrothermal processes - Mawrth (Oyama ejecta)
 - Distal – melt-bearing breccia (suevite) - Eberswalde (Holden ejecta)
 - No thick hot ejecta in Gale or Holden sites

- General characteristics of ejecta blankets
 - Highly shocked melt-bearing breccia (suevite), often in upper layer of ejecta. Can contain degassing pipes and accretionary lapilli
 - Minimally shocked material, consisting of excavated lithologies, ballistic emplacement, often lower layer of ejecta
 - Shocked rocks and even melts can also preserve organics. Example – organic material is preserved in terrestrial impactites, including loess-like targets (Shultz and Harris, 2010)
 - Contributions to surficial materials – soils and dust – especially early soils (paleosols?)
Gale Crater – Megabreccia, transported altered rim materials, and lake deposits?

- **Gale ellipse** – Northern crater rim: megabreccia (but MSL unlikely to head this way). Central ellipse: lower fan materials with cemented fractures (lake sediments?), transported crater wall material (aqueous and hydrothermally altered basement?)
- **Gale mound** – Post-impact lake sediments and aeolian or fluvial deposits.
- No exposures of thick and hot impact ejecta or melt sheets
Gale - New HiRISE of N. edge of ellipse

- Megabreccia at base of crater rim? (Parautochthonous basement)
- Inverted channel
- Cemented fractures (e.g., Anderson and Bell 2010) Lake sediments with patterned fill? (north central portion of ellipse)
Mawrth – edge of Oyama Crater

- Mawrth ellipse – Altered basement near Oyama crater,
 - Fractured basement – possible megabreccias
 - Capping unit may be hot ejecta (impact melt-bearing) from Oyama Crater and may be responsible for hydrothermal fluid alteration forming extent clays?
Ancient crust

Fault-related pseudotachylyte

Megaregolith/megabreccia

J. Spray
Basement brecciation beneath a transient cavity – See Dawn Sumner’s Mawrth talk

- Mawrth – Possibly in landing site ellipse due to nearby Oyama Crater
Mawrth - Dark capping unit as impact melt – New HiRISE image West of ellipse

- Evidence for breccia nature of capping unit (allochthonous ejecta probably melt-bearing):
 - from West of the center of Mawrth ellipse
 - along rim of Oyama, north of Mawrth ellipse (new image)
 - Sudbury Onaping melt breccia
Holden Crater – Megabreccias, lake sediments

- Holden ellipse – Crater wall material and megabreccia, (aqueous and hydrothermally altered basement) also lake sediments
- Holden go-to – Better examples of lake sediments, megabreccia, impact melt sheet? and aeolian or fluvial deposits
- No exposures of thick and hot impact ejecta or impact melt sheets
Impact ejecta blocks and megabreccias - meters to hundreds of meters in size, with varying shock levels

Holden Megabreccia

Popigai impact megablock zone, Russia
Eberswalde Crater – Megabreccia, Holden ejecta

- Eberswalde ellipse – Transported crater wall material and megabreccia (aqueous and hydrothermally altered basement?), lake sediments, extensive outcrops of thick ejecta from Holden crater (may include impact melt)
- Go-to sites – Crater rim material, lacustrine and fluvial deposits
- No exposure of the Eberswalde impact melt sheet
Eberswalde – megabreccia outcrop

Lewis and Aharonson (2010 meeting)
Smaller craters in landing site

- Ancient eroded or exhumed craters – possible exposures of local units in craters
- Craters with extent ejecta blankets – representative samples of local units with stratigraphic context
- Young recent or “fresh” craters with ejecta blanket, surface blocks and meteorites
 - Materials or rocks due to recent groundwater (or ground-ice?) alteration, including salts or evaporites should be accessible as clasts in ejecta (e.g., Lonar ejecta clasts – both shocked and unshocked - of aqueously altered basalt: (Wright & Newsom, LPSC 2011)
Impact crater processes - conclusions

- Impact hydrothermal deposits – Allochthonous or parautochthonous impact megabreccias
 - Holden – Ellipse megabreccia outcrop, transported fan deposits, also in Go-to site
 - Eberswalde – Ellipse megabreccia outcrops
 - Gale Rim – Outcrop edge of ellipse (but wrong direction from mound), fan deposit

- Thick ejecta blanket – Autochthonous impact melt bearing breccias
 - Eberswalde – Ellipse outcrops of Holden ejecta
 - Mawrth – Ellipse capping unit - remnants of Oyama ejecta?
 - Holden – Possible distal ejecta layers in fan and sediments
 - Gale – Possible distal ejecta layers in fan and sediments

- Small crater deposits and processes – All sites
 - Excavation and preservation of target rocks – traceability to formations, meteorites, shallow aqueous processes, salts, chlorides, etc. with evidence for recent climate conditions