The Geomorphology of the Proposed MSL Field Site in Gale Crater

Ryan Anderson & Jim Bell Cornell University

MOLA Team/NASA/GSFC/Google

Anderson & Bell (2010)

Anderson & Bell (2010)

Ellipse Science: Alluvial Fan

785

Jm⁻²K⁻¹s^{-1/2}

90

- Branching channels on the crater wall end in a fan-shaped feature.
- The fan can be divided into two units, distinguished by texture and thermal inertia (TI).

Low TI Fan

- Smooth surface with occasional ridges (inverted channels)
- Many craters appear filled or mantled
- May be a thin layer over High TI Fan

HiRISE Image: PSP_009716_1755

High TI Fan

- Underlies the Low TI fan.
- High TI fan is made of fractured, layered rock.
- Many craters are sharply defined, some are partially filled.

Ellipse Science: Alluvial Fan

- Fan sediment, inverted channels
 - Infer depositional process and duration
- Fan stratigraphy – Erosional and depositional history
- Samples of Gale crater wall (noachian crust)
 - Composition and alteration history

Hummocky Plains

• Much of the crater floor has a hummocky appearance.

Cemented Fractures

 North and west of the alluvial fan the hummocky plains unit is rugged, with many erosion-resistant ridges (likely cemented fractures).

- The hummocky plains preserves sinuous ridges likely to be inverted channels.
- Chains of mesas extend from the wall to the mound.

HiRISE Image: PSP_009571_1755

 The mesas appear to be associated with fans along the northern wall, and extend across the crater floor to merge with the mound-skirting unit at the base of the mound.

Anderson & Bell (2010)

• Are these features inverted channels or bedforms?

Science in the Ellipse: Inverted Features

- Cemented Fractures
 - How did the fractures form?
 - What is the composition and alteration history?
- Inverted channels
 - Determine depositional environment and flow characteristics.
 - Are the dense, branching features inverted channels or aeolian bedforms?
- Chains of mesas
 - What is their relation to fluvial processes?
 - Are they actually the same as the mound-skirting unit?

Science in the Ellipse: Old and Young Bedforms

- Study large "young" dunes how active are they?
- Characterize lithified bedforms in the mound-skirting unit

• The mound-skirting unit overlies the mound's basal unit, forming scarps and mesas.

• This light-toned, fractured, layered material is a ridge that broadens to the northeast.

 The trough between the light-toned ridge and the rest of the mound shows the strongest CRISM phyllosilicate signature in Gale. (Milliken *et al.* 2010)

 The rippled surface of the phyllosilicate-bearing trough appears to be hard: it is fractured, and dark dunes on it do not blend with their substrate.

- A filled channel is carved into the layered rocks of the lower mound.
- Channel fill material extends onto a patch of the mound-skirting unit.

Mound-skirting Unit

400 m

HiRISE Image: PSP_009149_1750

 MSL would be able to access a distinct marker bed that is traceable around much of the mound.

HiRISE Image: PSP_009149_1750

Cemented Fractures on the Mound

• Erosion-resistant ridges are common in Gale, including on the mound near the MSL traverse.

- This area is the primary target for MSL
 - Study interbedded phyllosilicate and sulfate-bearing strata, including marker bed
 - Characterize channel fill and the outcrop of mound-skirting unit
 - Work upwards through the lower mound stratigraphy
 - Study erosion-resistant fractures

- Left: Two possible traverses starting at the center of the ellipse.
- Traverse 1 is preferred: mound strata are betterexposed.
- Traverse 2 comes closer to inverted channels in the ellipse and spends more time on the mound-skirting unit.

Anderson & Bell (2010)

Conclusions

- Science targets in the ellipse:
 - Alluvial fan with exposed stratigraphy
 - Determine frequency and nature of deposition
 - Sample noachian crust
 - Study examples of subsequent burial and erosion
 - Inverted channels (on and off the fan)
 - Determine depositional environment, flow characteristics and duration
 - Cemented fractures
 - Characterize their composition and alteration history
 - Mound-skirting unit
 - Investigate relationship with fluvial processes (chains of mesas) and aeolian processes (lithified bedforms)
 - "Young" mafic dunes
 - Characterize modern aeolian transport parameters, soil mechanics, induration rates, etc.
- These are all targets of opportunity that MSL could study on the way to the mound.

Conclusions

• Science targets on the mound:

- Basal unit and light-toned ridge
 - Determine composition, depositional setting, etc.
- Interbedded phyllosilicates and sulfates
 - Alteration and depositional environment
 - Biomarker preservation
 - Do these reflect a global change?
- Filled channel and fan-shaped outcrop of mound-skirting unit
 - · Channel fill may provide samples from higher on the mound
 - Outcrop places the mound-skirting unit into stratigraphic context
- Large cemented fractures
 - Characterize the post-depositional alteration of mound materials
- Kilometers of stratigraphy!
 - Construct a detailed picture of ancient Mars.
- Gale Crater is a diverse landing site, with many science targets inside and outside of the ellipse!
 - MSL would be able to access materials from many different environments, maximizing knowledge gained about martian habitability.