Introduction: Overview of the MSL Landing Site at Mawrth Vallis

MANY PERSPECTIVES
INTERNATIONAL COLLABORATION
MULTIPLE WORKING HYPOTHESES
MAWRTH VALLIS FOR MSL: KEY POINTS, UNIQUE CHARACTERISTICS

- **Mineralogically diverse** site, both in the ellipse and in the region
- **Lithologically diverse** site that captures multiple environments
- **Both** in-situ, ancient crustal bedrock and remobilized sediments
- **Many** types of science **targets**
- Extremely **ancient section** of rocks probing an enigmatic and important epoch in Solar System history
- Opportunity to **sample rocks** from the deep Noachian up through the global transition into the Hesperian
GEOGRAPHIC CONTEXT
MINERALOGICAL DIVERSITY: CHEMICAL GRADIENTS?

- Follow the minerals:
 - Fe/Mg-smectites
 - Al-smectite
 - Kaolinite
 - Opaline silica
 - Fe2+ hydrated phase
 - Sulfates
 - Other hydrated phases

- Diverse mineralogy indicates that we have multiple environments in which to:
 - Search for biomarkers
 - Build a more complete picture of habitable environments at Mars

Bishop et al., Science, 2008
Why type of rocks do the clays occur within?

Cannot be just one lithology because of the wide range of geomorphology-lithology inferred from images.
GEOMORPHOLOGY OVERVIEW

- Layers everywhere
- Many expressions of layered units
- Erosion and redeposition by fluvial and eolian activity
GEOMORPHOLOGY AND LITHOLOGY OF THE CLAY-BEARING ROCKS

- There are a number of geomorphic expressions that indicate a range of lithologies

Michalski and Noe Dobrea, *Geology*, 2007
MULTIPLE SCIENCE TARGETS

- Hedge our bets by visiting multiple targets, each with intrinsic merit
TRAVERSING MARS’ AQUEOUS HISTORY

- Ancient, in-situ bedrock
- Younger, reworked, clay-bearing rocks
- Sulfate-bearing rocks
- Hesperian, dark cap unit
WHY DO WE SEE SPECIAL GEOLOGY AT MAWRTH VALLIS?

- Localized environment?
 - Or
- Unusual erosion of the region?

- Connection to the global picture
TESTABLE HYPOTHESES

Key observables:

Source of sediment

<table>
<thead>
<tr>
<th>Volcanic Model</th>
<th>Sedimentary Model</th>
<th>Pedogenic Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash fall</td>
<td>Ash flow</td>
<td>same as above, overprinted on any of the above</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Texture and bedding</th>
<th>Composition</th>
<th>Geologic contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>angular glass shards (MAHLI, CheMin), laminated bedding (MastCam, MAHLI)</td>
<td>Mineralogy dominated by glass and secondary phases (APXS, CheMin, ChemCam)</td>
<td>Depositional contact, if in lacustrine system, unconformable contact if on land (MastCam, MAHLI, ChemCam, CheMin, APXS)</td>
</tr>
<tr>
<td>angular glass shards (MAHLI, CheMin), cross bedding related to surge (MastCam, MAHLI)</td>
<td>Mineralogy dominated by glass and secondary phases (APXS, CheMin, ChemCam)</td>
<td>Depositional contact, if in lacustrine system, unconformable contact if on land (MastCam, MAHLI, ChemCam, CheMin, APXS)</td>
</tr>
<tr>
<td>very fine grained textures (MAHLI), uniquely dust or aggregates of dust</td>
<td>Mineralogy may be dominated by secondary phases, could contain evidence for primary feldspar and pyroxene (CheMin, APXS, ChemCam)</td>
<td>Depositional; composition probably cuts bedding because water source is likely groundwater from ice melt (APXS, ChemCam, MastCam, MAHLI, CheMin)</td>
</tr>
<tr>
<td>rounded sand grains in cross bedded rocks (MastCam, MAHLI) primary oxides (CheMin, APXS, ChemCam)</td>
<td>Abundant primary feldspar, possibly primary oxides (CheMin, APXS, ChemCam)</td>
<td>Depositional, composition follows bedding (APXS, ChemCam, MastCam, MAHLI, CheMin)</td>
</tr>
<tr>
<td>rounded sand grains interbedded with silt-dominated deposits, coarsening upward sequence(s) (MastCam, MAHLI)</td>
<td>Abundant primary feldspar, possibly primary oxides (CheMin, APXS, ChemCam)</td>
<td>Depositional, composition follows bedding (APXS, ChemCam, MastCam, MAHLI, CheMin)</td>
</tr>
<tr>
<td>fragmented, angular clasts spanning a range of grain sizes; impact glass (MastCam, MAHLI, CheMin)</td>
<td>Basaltic primary minerals (CheMin), meteoritic elements (CheMin, APXS, ChemCam)</td>
<td>Series of unconformable contacts, composition probably does not follow bedding because source of water is likely to be groundwater (APXS, ChemCam, MastCam, MAHLI, CheMin)</td>
</tr>
<tr>
<td>Could be overprinted on any of the above, but may also contain vugs, various "soil" structures, evidence for impact gardening</td>
<td>Could be overprinted on any of the above, but may also contain higher values of immobile elements and oxide minerals in pedogenic horizons (CheMin, APXS, ChemCam)</td>
<td>Pedogenic horizons should contain disrupted lower contacts, composition should not uniquely follow primary bedding (CheMin, APXS, ChemCam)</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

14 Peer reviewed (perhaps we suffer a bit from too much information)

- Sumner, D (submitted). Physical outcrop characteristics of the Mawrth MSL candidate landing site. IJMSE.