

Terby Crater

- D ~165 km
- Noachian [Leonard and Tanaka, 2001; Wilson et al., 2007]
- 28°S, 287°W
- Elevation Range: 0 to -5000 m
- Diverse assemblage of terrains and geologic processes

Landing Ellipse 1: Moat Deposit

- Very flat
- Elevation: -5km
- Possibly more elliptical (NW/SE orientation)
- No HiRISE image

Science in the ellipse:

- LD in benches (2.5 km), CF (400 m), mounds
- esker like ridges

Science outside ellipse:

Access to ancient wall rock, stratigraphy of layered benches

Landing Ellipse 2: CF/FD boundary

Science in the ellipse:

- LD in bench dissected by fan deposit, LD in CF
- Hesperian alluvial fan (2 depositional periods)
 - Incorporated light-toned material from layered benches, NW crater wall rock, ice-rich materials
 - mid-latitude processes

Science outside the ellipse:

•Grooved terrain (GT) associated (fluidized ejecta from NW crater?), ice processes recorded on northwestern TF (late Noachian to Hesperian)

NASA/JPL/Arizona State University

- N/S texture
- Boulder lag (high TI)
- Smooth lighttoned deposits

Ellipse 2: CF

Nature of the Layered Deposits

- Light- and intermediate-toned
- Indurated and fine-grained
 - Based on appearance, steep scarps, ease of erosion, TI, preservation of faults, fractures, folds (?) and contacts
- Laterally continuous (km scale)
- Consistent thicknesses (km scale)
- Fe or Mg-rich clay and hydrated signature (CRISM)
- Scalloped texture aeolian deflation
- Mid to Late Noachian [Ansan et al., 2005; Mest and Crown, 2005, Wilson et al., 2007]

Wilson et al., JGR, 2007 km PSP 1662-1520 NASA/JPL/University of Arizona

Stratigraphy

- 4 sub units
- Probable correlation across troughs

Stratigraphy: Sub units 1 (LD₁) and 3 (LD₃)

HiRISE PSP 1662-1520 NASA/JPL/University of Arizona

- Characterized by thin (~1-25 m thick) intermediate-toned layers interbedded with thicker (~100 m) light-toned beds
- Fine-grained intermediate-toned layers weather along meter-scale joints, produces boulders

Stratigraphy: Sub unit 1 (LD₁)

- HiRISE image from northern edge of mesa
- Sub meter-scale, continuous layers/laminations
- Deposition from suspension
- Tone variations: differences in composition (grain size), cementation or induration

Sub unit 2 (LD₂)

PSP 002216-1525 NASA/JPL/University of Arizona

- ~ 400 m thick; light-toned, irregular, non-horizontal, discontinuous, possibly folded beds of variable thicknesses
- Change in depositional environment
- Appearance and scale consistent w/ soft sediment deformation

Stratigraphy: Sub unit 4 (LD₄)

LD₄ (top)

- ~100 m thick 20 m
- Package of light-toned LD "sandwiched" between dark-toned, rubbly, clay-rich layers
- Weathering non-uniformly, producing boulders
- Thickness (~5-15 m) of boulder-rich layers varies along strike

Hydrate Fe/Mg-Phyllosilicate

Original Depositional Geometry of the Layered Deposits

- •Maker beds and MOLA tracks provide consistent picture of bedding sloping at ~3 degrees southward along track (similar geometry of LD in Niesten, SW crater)
- •If layers were projected across moat deposit (MD), most would intersect the 400 m layered sequence exposed along north-facing scarp

Origin of the Layered Deposits

Process	Problem	
Volcanic flows or intrusions	Fine grained, repetitive nature, erodable	X
Mass wasting	Fine grained, repetitive nature, lack of source	X
Volcanic Airfall	Repetitive nature, consistent thickness, induration of layers, lack of obvious proximal volcanic source.	X
Glacial	Faults, absence of glacial flow and internal collapse features, layers of regular thickness	Х
Fluvial	Geometry not consistent with prograding fan, lack of course grained material, consistent thickness and no obvious source	X
Aeolian Dunes	Fine grained, lack of cross-bedding	X
Lacustrine	Nature, geometry and mineralogy consistent with deposition in fluid moderated by an environmental cycle (climate or seasons)	
Fine-grained, terrain conforming and cliff- Loess forming, need upslope winds, might be rhythmically layered		O

Is Terby One-Of-A-Kind?

- No! Terby is special, but not unique
- Similar morphology in other craters around Hellas

[comparative study by Wilson et al., JGR, 2007]

 Important to discern regional history of deposition and erosion

Craters in Circum Hellas with Pits and Layers

Regional Setting

- Histogram of Elevation in around Hellas
 - Peaks at -6.9 km, -5.8 km, 4.5 km, 3.1 km, correlate to stratigraphic evidence [Moore and Wilhelms, 2001]
 - Possible water stands in Terby at -2.1 km, -3.1 km, -4.5 km
 - High/low elevation related to deposition/erosion?
 - Also peaks at -700 m and +600 m, correlate to welldeveloped, inward facing scarps

Regional Setting and Habitability

Wilson et al., JGR, 2007 [after Moore and Howard, 2005]

- Circum-Hellas craters with pits/layers ≤ +600 m contour
- Poss. deposition in large, long-lived (?) lake = hospitable!
- Terby submerged; sediment trap; poss. long-shore drift envt

MSL Science Goal Scorecard – A+

Ability to characterize geology/geochemistry

- Geologic history is complex but perhaps more well-constrained than other craters with interior LD
- Stratigraphy, geometry & age of LD similar to circum-Hellas craters
- Well-studied regional context: Hellas

Evidence for Habitable Environment

- Best chance to study large, long-lasting, deep (up to 3.6 km), latestage water body
- Long-standing periods of water better than ephemeral crater lakes in providing stable, hospitable environment for establishment of life

Preservation of biosignatures

- Thick (2.5km) exposure of sedimentary deposits (varying stratigraphy)
- Nature of LD (fine-grained, laterally continuous, sub meter-scale bedding, mineralogy, etc) ideal & consistent with lacustrine origin
- Strong Fe/Mg clay and hydrated signature may enhance preservation of organics

Ability to assess biological potential with MSL payload

LD accessible in/outside both ellipses; diversity of landforms/processes

ENGINEERING SCORECARD FOR TERBY CRATER

ENGINEERING PARAMETER	REQUIREMENT	PASS/FAIL
Latitude	45°N to 45°S	PASS
Altitude	≤ + 1 km	≤-4.5 km PASS
Landing ellipse diameter	≤ 25 km	PASS
	2 to 10 km length scale	PASS
Slopes	1 – 2 km length scale	PASS
Stopes	200 – 1000 m length scale	TBD
	2 - 5 m length scale	PASS
Load bearing surface	Not dominated by dust	PASS
Rock Height	≤ 0.6 m	TBD
Radar Reflectivity		TBD
Surface winds	<15 m/s (steady); <30 m/s (gusts)	TBD

Summary

- Thickness (> 2 km thick), nature and regional setting of LD indicative of lacustrine origin
- LD in Terby characteristic of Hellas region
- Best chance to study large, long-lasting, latestage water body
- Fe- or Mg-rich clay minerals and hydrated minerals – preservation of organics
- Satisfies MSL Science Goals
- Mid-latitude processes (fan deposit, ice processes)
- Important scientific issues to be resolved:
 - Origin of layers
 - Source of material (aeolian, volcanic, etc?)