Potential Atmospheric Hazards

EDL “Council of Atmospheres”

October 23, 2007
EDL System Sensitivities

- Closed-loop, guided entry based on inertial measurements
- Below 30 km MOLA, variations in density/wind/speed of sound from predicted values may cause the internally computed velocity and acceleration with respect to Mars to diverge from the true values
- Both parachute deploy and heatshield separation are critical events that must occur within Mach number and dynamic pressure constraints

- After Powered Descent start (2.0 km AGL)
 - MSL is robust to atmospheric variation
 - But: vertical winds at initiation of powered descent affect fuel usage assumptions
 - Not sensitive to horizontal winds, density perturbations during powered descent

Region of interest:
~2 km AGL - 30 km MOLA

Region of robustness:
0 km - 2 km AGL
Engineering Safety Constraints

(Within 100 km of the Site)

<table>
<thead>
<tr>
<th>Density</th>
<th>Entry</th>
<th>Parachute Trigger</th>
<th>Heatshield Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td><15% unc. from 20 km MOLA to 30 km MOLA</td>
<td>< 10% unc. from 6.5 km MOLA to 20 km MOLA</td>
<td>< 10% unc. from 6.5 km MOLA to 20 km MOLA</td>
<td></td>
</tr>
</tbody>
</table>

Thresholds for landing elevations > -1 km MOLA

- **u,v**:
 - < 25 m/s unc. from 6.5 km MOLA to 20 km MOLA
 - < 20 m/s unc. from 3 km MOLA to 6.5 km MOLA
- **W**:
 - < 20 m/s unc. from 3 km MOLA to 6.5 km MOLA
- **C Sound**:
 - < 7% unc. from 6.5 km MOLA to 15 km MOLA
 - < 7% unc. from 3 km MOLA to 6.5 km MOLA

All Landing Altitudes
- **Sky Crane**
 - max. < 30 m/s
 - From 0 to 10 m AGL
 - max. < 20 m/s
 - From 1 to 5 km AGL
- **Backshell**
Atmospheric Working Group

- Held workshops in 2005 and 2006 to bring the EDL team and atmospheric scientists together; reviewed EDL simulations and scientific models; discussed approaches of MER and PHX.

- In October 2006 we formed a “Council of Atmospheres” to perform analyses and advise the project:
 - MSL Project: EDL team, Mission Manager, Project Science
 - External scientists: Scot Rafkin (SwRI), Jeff Barnes and Dan Tyler (OSU)
 - MarsGRAM and EDL Simulations: Jere Justus, Hilary Justh, Alicia Cianciolo, David Way
 - Additional help from Rich Zurek, Michael Mischna, David Kass, Bruce Cantor

- Goals:
 - Identify potential hazards (regions, phenomena, etc.)
 - Generate simulations, analysis tools, and interfaces
 - Certify safety of candidate sites
Atmospheric Working Group

- Two major workshops and biweekly telecons
- Identified “challenge sites” based on candidate landing sites and a survey of the entire MSL-accessible region.
- Simulated nominal conditions at these sites using MarsGRAM database and state-of-the-art GCM, mesoscale, and LES models.
 - Terby, Melas Chasma, Meridiani, Nili Fossae Trough, Gale
- Extracted relevant results and statistics and assessed them against EDL engineering safety constraints.
- Successfully demonstrated an end-to-end simulation of the MSL spacecraft flying through a model-generated atmosphere.
Atmospheric Hazards

- Season is near the maximum extent of the southern CO₂ cap; deep southern winter
- Descent through SH jet stream is a challenge unique to MSL
- Jet stream has variability in latitude, magnitude
- Also associated with cyclonic winter storms (like Earth)
- Other hazards include vertical winds due to large-scale convergences, orographic and slope winds, planetary boundary layer convection (amplified in NH summer)
Multiple profiles of horizontal wind (\(v \)) and variability envelopes for three challenge sites from MRAMS:
Atmospheric Hazards

SH jet stream mean velocity and afternoon mixed layer depth from OSU Mars-MM5:
Example of mesoscale model topography and vertical winds in Melas Chasma:
Atmospheric Assessment

- For this workshop, our team has provided a “stoplight” ranking of each candidate site based on what we’ve learned through the preliminary assessment of our challenge sites.
 - Proximity to regional topographic or albedo/TI gradients; active PBL
 - Local topography that may induce orographic or slope-driven winds
- After the workshop, we will perform a detailed and comprehensive assessment of each candidate site against the engineering constraints as part of the final selection & certification process.
 - Planetary and regional circulations
 - Topographic and convectively driven winds at the highest spatial resolution possible
 - Sub-grid turbulence; waves
 - Validation against observations
 - Non-nominal conditions including local / regional dust storms