Mars Habitability for MSL

Dawn Y. Sumner Geology, UCDavis

Photo Credit: NASA/JPL

Looking for Life on Earth

- Morphological Fossils
 - Microbial Communities
 - Stromatolites & Microbialites
 - Microfossils
 - Too small for MSL to see
- Most Common Where Minerals Precipitate

Looking for Life on Earth

- Organic Molecules
 - Isomers
 - Chirality
 - Diastereomers
 - Structural
 - Subunit Building Blocks
 - Patterned Distributions
 - Specific Compounds
- Often Associated with Clay Minerals

Bitumen II (70-506 ppb)

Image Credit: Waldbauer et al., in review, Precambrian Research (NRC, 2007, An Astrobiology Strategy for the Exploration of Mars)

Chemical Activity of Water

- Life needs a certain water activity to reproduce.
 - "Based on current knowledge, terrestrial organisms are not known to be able to reproduce at an activity of water below 0.62." (These are fungi and yeast in the lab.)
- Solutes reduce water activity.
 - NaCl saturation: $a_w = 0.75$
 - CaCl₂ saturation: a_w = 0.29
- Lower solute limits not characterized for bacteria or archaea.

Chemical Activity of Water

• Thin Film or Matrix Effects

 $a_w = 0.999$: Microbial motility ceases in porous media $a_w = 0.97-0.95$: Lower limit for growth of *Bacillus spp.* $a_w = 0.88$: Lower limit for growth of *Arthrobacter spp.* $a_w = 0.93-0.86$: Microbial soil respiration ceases

• Average Water Film Thickness and a_w:

500 nm : a_w =0.996 3 nm : a_w =0.99 <3 nm : a_w =0.97 (<10 H₂0 Molecules Thick) <1.5 nm : a_w =0.93 (< 5 H₂0 Molecules Thick) <0.9 nm : a_w =0.75 (< 3 H₂0 Molecules Thick)

(MEPAG Special Regions Science Analysis Group, 2006, Astrobiology)

Mars - Bad for MSL

- Regolith & Dust
 - Too Oxidizing for Organics
 - No Textural Preservation

Unaltered Igneous & Metamorphic Rocks

- High Temperature Origin

Mars - Poor \downarrow to Okay \uparrow for MSL

Weathered Outcrops

- Degradational Environment (↓)
- Long Surface Exposure Time (\downarrow)
- Oxidative, Dry Surface Now (\downarrow)
- Local Life Required (\downarrow)
- Hydrothermal Systems
 - Accretionary (\uparrow)
 - Mineral Precipitation (↑)
 - High Water Activity ([↑])
 - High Temperature (\downarrow)

Mawrth Valles Blue = Clays

Photo Credit: Mars Express/OMEGA and HRSC teams

Mars - Sedimentary Rocks

- Better Syn-Sedimentary Properties
 - More Water Exposure
 - Lower Oxidation State
 - Finer Grained

Better Post Depositional Properties

- Less Water Exposure
- Deflating or Eroding Topography

~1 km wide

Photo Credit: NASA/JPL/MSSS MOC

Mineralogy - Hematite & Fe(III)

- In Sediments
- Suggests Aqueous Activity
- Exciting Discoveries

Aram Chaos Hematite Abundance

Mineralogy - Hematite & Fe(III)

- Not Stable with Organics
- Kinetics of Fe(III) Reduction and Organic Oxidation is Rapid (on geologic timescales)

Mineralogy - Hematite & Fe(III)

5 cm diameter core

• Only Studies I Know from Earth:

– 2 Ma Rio Tinto terrace

• Goethite and Recalcitrant Organics Only (Fernandez Remolar and Knoll, in review)

Jurassic Navajo Sandstone

 Hematite Concretions Lack Organics (Souza-Egipsy et al., 2006)

- 1.88 Ga Gunflint Iron Formation

- Hematite and Graphite Inclusions in Chert (Tazaki et al., 1992)
- Pressure may stabilize graphite

Mineralogy - Sulfates

- Require Substantial Water-Rock Interaction
- Precipitation can Encapsulate Organics

Mineralogy - Sulfates

- Not Stable with Organics
- Kinetics of S(VI) Reduction to SI-III and Organic Oxidation can be Very Slow

SO₄²⁻ Metastable for 1-10 billion years at pH 4-7

SO₄²⁻ Metastable for 5,000 years at pH 2

(Ohmoto and Lasaga, 1982)

 I know of no studies on Earth showing organics in ancient sulfates

Microbial sulfate reduction may oxidize organics

Mineralogy - Clay Minerals

- Not all Phyllosilicates are Clay Minerals
 - Smectites good
 - Micas irrelevant

• When in Deposited Layers:

- Regional Signatures
 Integrated
- Good Preservation
 Potential

Nilli Fossi Greener = "Phyllosilicates"

Mineralogy - Clay Minerals

- Bind Organics in Interlayers
- Low Redox Potential
- Low Post-Depositional Permeability

Image Credit: RT Cygan http://www.sandia.gov/geobio/randy_files/image018.jpg

MSL Landing Sites

Mineral Summary

- Hematite Bad for Organics, Good for Morphology
- Sulfates Okay for Organics, Okay for Morphology
- Clay Minerals Good for Organics, Bad for Morphology

MSL Landing Sites

- Good Syn-Depositional Parameters
 - High Water Activity
 - Accreting Environment
 - Mineral Precipitation
 - Low Oxidation State
- Good Post-Depositional Parameters
 - Low Water Activity, Low Permeability
 - Low Temperatures
 - Low Oxidation State
 - Deflating or Eroding Topography