Mars Habitability for MSL

Dawn Y. Sumner
Geology, UCDavis

Photo Credit: NASA/JPL
Looking for Life on Earth

- **Morphological Fossils**
 - Microbial Communities
 - Stromatolites & Microbialites
 - Microfossils
 - Too small for MSL to see

- **Most Common Where Minerals Precipitate**

Photo Credit: Sumner
Looking for Life on Earth

- **Organic Molecules**
 - Isomers
 - Chirality
 - Diastereomers
 - Structural
 - Subunit Building Blocks
 - Patterned Distributions
 - Specific Compounds
- **Often Associated with Clay Minerals**

Image Credit: Waldbauer et al., in review, Precambrian Research (NRC, 2007, An Astrobiology Strategy for the Exploration of Mars)
Chemical Activity of Water

• **Life needs a certain water activity to reproduce.**
 - “Based on current knowledge, terrestrial organisms are not known to be able to reproduce at an activity of water below 0.62.” (These are fungi and yeast in the lab.)

• **Solutes reduce water activity.**
 - NaCl saturation: $a_w = 0.75$
 - CaCl$_2$ saturation: $a_w = 0.29$

• **Lower solute limits not characterized for bacteria or archaea.**

(MEPAG Special Regions Science Analysis Group, 2006, Astrobiology)
Chemical Activity of Water

• **Thin Film or Matrix Effects**

 \(a_w = 0.999 \): Microbial motility ceases in porous media

 \(a_w = 0.97 – 0.95 \): Lower limit for growth of *Bacillus spp.*

 \(a_w = 0.88 \): Lower limit for growth of *Arthrobacter spp.*

 \(a_w = 0.93 – 0.86 \): Microbial soil respiration ceases

• **Average Water Film Thickness and \(a_w \):**

 500 nm \(a_w = 0.996 \)

 3 nm \(a_w = 0.99 \)

 \(<3 \) nm \(a_w = 0.97 \) (<10 \(H_2O \) Molecules Thick)

 \(<1.5 \) nm \(a_w = 0.93 \) (< 5 \(H_2O \) Molecules Thick)

 \(<0.9 \) nm \(a_w = 0.75 \) (< 3 \(H_2O \) Molecules Thick)

(MEPAG Special Regions Science Analysis Group, 2006, Astrobiology)
Mars - Bad for MSL

- **Regolith & Dust**
 - Too Oxidizing for Organics
 - No Textural Preservation

- **Unaltered Igneous & Metamorphic Rocks**
 - High Temperature Origin

Photo Credit: NASA/JPL Pathfinder
Mars - Poor ↓ to Okay ↑ for MSL

- **Weathered Outcrops**
 - Degradational Environment (↓)
 - Long Surface Exposure Time (↓)
 - Oxidative, Dry Surface Now (↓)
 - Local Life Required (↓)

- **Hydrothermal Systems**
 - Accretionary (↑)
 - Mineral Precipitation (↑)
 - High Water Activity (↑)
 - High Temperature (↓)

Photo Credit: Mars Express/OMEGA and HRSC teams

Mawrth Valles
Blue = Clays
Mars - Sedimentary Rocks

- **Better Syn-Sedimentary Properties**
 - More Water Exposure
 - Lower Oxidation State
 - Finer Grained

- **Better Post Depositional Properties**
 - Less Water Exposure
 - Deflating or Eroding Topography

~1 km wide

Photo Credit: NASA/JPL/MSSS MOC
Mineralogy - Hematite & Fe(III)

- In Sediments
- Suggests Aqueous Activity
- Exciting Discoveries

But ...

Aram Chaos
Hematite Abundance

(Glotch and Arvidson, 2007, JGR)
Mineralogy - Hematite & Fe(III)

- Not Stable with Organics
- Kinetics of Fe(III) Reduction and Organic Oxidation is Rapid (on geologic timescales)

(Sumner, 2004, JGR)
Mineralogy - Hematite & Fe(III)

- Only Studies I Know from Earth:
 - 2 Ma Rio Tinto terrace
 - Goethite and Recalcitrant Organics Only
 (Fernandez Remolar and Knoll, in review)
 - Jurassic Navajo Sandstone
 - Hematite Concretions Lack Organics
 (Souza-Egipsy et al., 2006)
 - 1.88 Ga Gunflint Iron Formation
 - Hematite and Graphite Inclusions in Chert
 (Tazaki et al., 1992)
 - Pressure may stabilize graphite
Mineralogy - Sulfates

- Require Substantial Water-Rock Interaction
- Precipitation can Encapsulate Organics

(Griffes, et al., 2007, JGR)
Mineralogy - Sulfates

- Not Stable with Organics
- Kinetics of S(VI) Reduction to S(-II) and Organic Oxidation can be Very Slow
 \[\text{SO}_4^{2-} \text{ Metastable for 1-10 billion years at pH 4-7} \]
 \[\text{SO}_4^{2-} \text{ Metastable for 5,000 years at pH 2} \]
 (Ohmoto and Lasaga, 1982)

- I know of no studies on Earth showing organics in ancient sulfates
 - Microbial sulfate reduction may oxidize organics
Mineralogy - Clay Minerals

- Not all Phyllosilicates are Clay Minerals
 - Smectites good
 - Micas irrelevant

- When in Deposited Layers:
 - Regional Signatures Integrated
 - Good Preservation Potential

Nilli Fossi
Greener = “Phyllosilicates”

Silicate mineral spectral map

10 kilometers

Mineralogy - Clay Minerals

- Bind Organics in Interlayers
- Low Redox Potential
- Low Post-Depositional Permeability

MSL Landing Sites

- **Mineral Summary**
 - Hematite - Bad for Organics, Good for Morphology
 - Sulfates - Okay for Organics, Okay for Morphology
 - Clay Minerals - Good for Organics, Bad for Morphology
MSL Landing Sites

- **Good Syn-Depositional Parameters**
 - High Water Activity
 - Accreting Environment
 - Mineral Precipitation
 - Low Oxidation State

- **Good Post-Depositional Parameters**
 - Low Water Activity, Low Permeability
 - Low Temperatures
 - Low Oxidation State
 - Deflating or Eroding Topography