The CRISM View of Mars
Scott Murchie¹, Frank Seelos¹
and the CRISM Science Team
¹ Applied Physics Laboratory, Laurel, MD
CRISM Detects and Maps Minerals Using Vis-NIR Imaging Spectroscopy

A single image is ~10 km wide, in 544 colors covering 0.36-3.92 µm at 6.55 nm/channel, up to 15 m/pixel

Each pixel has a spectrum that can be compared with mineral spectra
Operating Mode 1: Targeted Observations

- For selected sites
- 11 images per observation, 360-3920 nm, all 544 wavelengths
- Central image is unbinned (18 m/pixel) or 2x binned (36 m/pixel); main geology product
- 1st 5 and last 5 are 10x binned spatially (~180 m/pixel); to separate surface/atmosphere
Operating Mode 2: Multispectral Survey

- Lower-resolution global map to provide context and to find new targets
- 72 programmable wavelengths at full spectral resolution, 10x-binned spatially to 200 m/pixel
- Multispectral "noodles" mosaicked to create global map

1 orbit 3-min segment
Standard Processing

- Calibration to radiance
 - Reference against internal integrating sphere
- Correction to I/F
 - Divide by solar spectrum
- Derivation of photometric angles
 - SPICE
- Atmospheric / photometric correction
 - Normal method: divide by \(\cos i \), scaled ratio spectrum of base/summit of Olympus Mons
- Calculation of spectral summary products
 - Images of strengths of key absorption bands
- Extracted spectra are commonly ratioed to nearby "dusty" regions to cancel out systematic artifacts
Spectral Signatures in Global Mapping Data (tile 750)

- Phyllosilicates
- Pyroxene
- Olivine

Graph showing the relative reflectance vs wavelength, with markers indicating specific wavelengths for each mineral.
Summary Products

- 45 total products showing known or potential variations in surface spectra

- See Pelkey et al. 2007, Aug. 2007 *JGR-Planets*

- This view shows local compositional variations in part of tile 750 in Tyrrhena Terra:

 \[R = \text{olivine index} \]
 \[G = 2.3-\mu\text{m phyllosilicate absorption} \]
 \[B = \text{pyroxene index} \]
Sulfates in Hesperian Layered Deposits

- Interior layered deposits in W Candor Chasma

CTX image shows exposures of eolian-sculpted layered rocks with eolian debris
Composition varies between layers at the 10's-m scale

Light-toned layered rock with monohydrate signature

Light- and medium-toned cap-forming layered rock with polyhydrate signature

5 km

R,B = BD1900 (polyhydrate); G = BD2100 (monohydrate)
Composition varies between layers at the 10's-m scale

Interior layered deposits in E Candor Chasma

R,B = BD1900 (polyhydrate); G = BD2100 (monohydrate)
Noachian crust exhibits dramatic compositional layering

IR False Color (2528, 1505, 1078 nm)

- Nili Fossae reveals a section of Noachian rocks with a wide range of compositions
- These data suggest that Mars was wet about 4 billion years ago but became much colder and dryer by the latter stage of valley network formation (~3.7 billion years ago)
Phyllosilicates are widespread in the Noachian crust.
Follow-up Observations with Full Resolution

- Exposures are on crater walls, ejecta, and central peaks, also eroded highland remnants.
- Absent from comparable sized craters in Hesperian and Amazonian units.
- Indicates exposures from 100's of meters to kilometers depth in Noachian units; early to middle Noachian.

(R = pyroxene index, B = 2.3-µm phyllosilicate absorption, on 1.3-µm albedo)
A wide range of hydroxylates silicates is present

- Identifications are preliminary
- Restricted to Noachian rocks
- Saponite is most common
- If the unaltered composition was basaltic, a wide range of temperatures and amount of leaching are implied