Compositional Diversity in Eos Chasma

Victoria E. Hamilton University of Hawaii

Additional CRISM analysis: Amy Trueba Knudson

Overview

- Geographic orientation
- ► THEMIS identification of quartz/silica-bearing materials
- CRISM observations of regional materials
- Quartz/Silica-forming processes
- Images of ellipse/engineering
- Science criteria

Silica

- Any SiO₂ phase or lithology
- Amorphous SiO₂
 - Volcanic glass (e.g., obsidian)
 - Opals (e.g., opal-A, opal-C, opal-CT)
- Crystalline SiO₂
 - mineral polymorphs (e.g., quartz, tridymite, cristobalite, coesite)
 - rock form (e.g., chert, sinter)
- SiO2-rich phases? (e.g., feldspar, zeolite)

Colorized MOLA elevation over THEMIS IR

Originally "go to" site, but maybe not.

THEMIS IR Spectra

Bound water

VNIR Spectra of Cherts

- VNIR spectra of terrestrial cherts show variable ferric iron, water, other features that are diagnostic
- Not all cherts have strong hydration features, should not expect to detect on Mars

HRS00003619

Quartz- and Silica-Forming Processes

- A variety of processes produce quartz, and many of these processes involve aqueous activity
 - Evolved igneous activity crystalline quartz
 - Metamorphism crystalline quartz
 - Precipitation from hydrothermal fluids vein quartz
 - Precipitation from ambient fluids quartz, sinter, "cements"
 - Replacement of evaporites/carbonates chert (chalcedony)
 - Diagenesis of abiotically precipitated opaline silica chert
 - Diagenesis of biotically precipitated opaline silica chert

Bedding plane that has been case hardened by a layer of chert a few millimeters thick [*McBride et al.*, 1999]

s - sandstone

f - fractures

c - chert

n - nodular chert b - brecciated chert

Trewin et al. (http://www.abdn.ac.uk/rhynie/texture.htm)

Tests for the Mars Science Laboratory

- The MSL payload can test hypotheses for the origin of quartz and/or silica in situ:
 - What is the distribution of the phase in relation to macroscopic textural features of the rock?
 - What is the structure and chemistry of the phase?
 - What other minerals are present?
 - Are any precursor opaline phases present?
 - Chemical or morphological biosignatures?
- So what about the ellipse?

CTX P007_003921_1703; width ~40 km

Engineering Requirements

Parameter	Requirement	Actual
Latitude	30°N to 30°S	-10.7°
Elevation	≤ +I km	-3.8 km
Slopes	2-10 km: ≤20°	"green"
	I-2 km: 43 m @1km (2.5°); 720 m @2km	"yellow"
	200-1000 m: ≤43 m relief	"yellow"
	2-5 m	"red" - elevation trade?
Rock Abundance	"low to moderate"	IRTM "red" (but HUGE pixels include walls/mesas of VM)

IRTM pixels ~60 x 60 km

Engineering Requirements

Parameter	Requirement	Actual
Winds (0-10 km)	Steady State Vertical: ≤20 m/s	TBD
Wind gusts	<30 m/s	TBD
Radar Reflectivity	Ka band reflective (> -20 dB and <15 dB)	TBD
Load Bearing Surface	TI >100 SI units	TES TI range: 400 - 520 SI units
	Albedo: <0.25	Albedo range: 0.11 - 0.12

Summary...

- Eos Chasma/outflow region exhibits abundant geomorphic evidence of aqueous activity
- Quartz/Silica-bearing materials identified in Eos Chasma; materials likely present in landing ellipse, some outcrop deposits just in ellipse, others at ellipse edge
- Hypotheses of formation offer a wide range of tests ideally suited to MSL payload
 - Many processes of formation involve water
 - Some mechanisms of formation involve biological processes
 - These mechanisms commonly preserve biomarkers

Science Criteria Mars Science Laboratory

Ability to Assess Biological Potential w/MSL payload

- Analysis for organics in silica phase(s), evaluation of texture/structure of minerals will provide clues to environment
- Outcrops of interest in ellipse, larger outcrops at edge
- Evidence for habitable environment, aqueous environment, type of habitable environment
 - Small stream-like features in and around ellipse
 - Not layered (but not lacustrine)
 - Outflow environment style and duration unknown; previous environment unknown; possible groundwater, hydrothermal

Science Criteria Mars Science Laboratory

Preservation of biosignatures

- Ranges from very good (chert) to not very good (granite) a testable hypothesis
- Just because silica-rich materials may not preserve biosignatures, the environments and water that have affected the area may mean other preserving materials exist
- Ability to characterize geologic/geochemical context within geologic timescale & geologic/geomorphic setting
 - Yes, to the degree that ages of canyon floor materials are known
 - LCP- and olivine-enriched materials very nearby context

This work supported by Mars Data Analysis & ODY Participating Scientist Programs