Overview of Workshop:

- Completely Open Process
 - If you have something to say, say it
- Extremely full agenda
 - Rule presentation times with "iron fist"
 - Talks will be terminated if they run long
- Discussion of Science and Engineering
- Individual talks on proposed sites
 - Distributed in sessions by topic
 - Chaired by Steering Committee Members
- Discussion at end of each session
- Complete "Criteria Table" for each site

Current Engineering Constraints*

Engineering		Requirement	Notes		
Parameter					
Latitude		45°N to 45°S	Sites poleward of 30°N have degraded EDL comm.		
Elevation		\leq +1 km	MOLA-derived elevation		
Landing ellipse radius and azimuth		≤ 12.5 km in the down- track direction; ~10 km in cross-track direction	Allowing for wind-induced uncertainty during parachute descent		
	2 to 10 km length scale	≤ 20°	Radar spoofing in preparation for powered descent. Also applies to "warning track" region.		
Terrain Relief / Slopes	1 to 2 km length scale	≤ 43 m relief at 1 km, linearly increasing to 720 m at 2 km	Radar spoofing in preparation for powered descent.		
	200 to 1000 m length scale	≤ 43 m relief	Control authority and fuel consumption during powered descent		
	2 to 5 m length scale	≤ 15°	Rover landing stability and trafficability in loose granular material		
Rock height		≤ 0.55 m	Probability that a rock higher than 0.55 m occurs in a random sampled area of 4 m ² should be less than 0.50%. Suggests low to moderate rock abundance.		
Radar reflectivity		Ka band reflective	Adequate Ka band radar backscatter cross-section (> -20 dB and < 15 dB)		
Load bearing surface		Not dominated by dust	Thermal inertia >100 J m ⁻² s ^{-0.5} K ⁻¹ and albedo <0.25; radar reflectivity >0.01 for load bearing bulk density		
Surface winds for thermal environment		< 15 m/s (steady) < 30 m/s (gusts)	Constraints apply over all seasons and times of day, at 1 m above the surface. These constraints provide an environment in which the rover can perform science operations. Also, steady winds must never exceed 40 m/s when the rover is non-operating (sleeping).		

Overview of Workshop:

- Extremely full agenda
 - Rule presentation times with "iron fist"
 - Talks will be terminated if they run long
- Discussion of Science and Engineering
- Individual talks on proposed sites
 - Distributed in sessions by topic
 - Chaired by Steering Committee Members
- Discussion at end of each session
- Complete "Criteria Table" for each site

Completing Criteria Tables (I):

Summary MSL Landing Site Criteria

Major Questions/ Criteria:

Landing Sites:

Science Criteria

Nili Fossae Holden Terby Mawrth Eberswalde Gale

Ability to Assess Biological

Potential w/MSL Payload

Evidence for Habitable

Environment (Environment of Formation and Deposition)

Aqueous Environment, Type of Habitable Environment

Preservation of Bio-

Signatures

Organic Material, (Pre) Biotic Materials,

Biologic Textures, Mineralogic Biosignatures

Ability to Characterize

Geology/Geochemistry

Context within Geologic

Timescale

Context within Geologic/

Geomorphic/

Stratigraphic Setting

Accessibility

Accessed by Rover/Arm

Go To

Distance/trafficability

to Materials of Interest

<1 km. <5 km, >10 km Dust Obscuration

Reduced Performance

Thermal Constraints

Completing Criteria Tables (II):

Site Selection Timeline:

November 2005

Preliminary Engineering Constraints Defined

January 2006

Announcement/Invitation to Workshop

Engineering constraints defined

Science objectives defined

May 2006

First Landing Site Workshop

Prioritize all sites for imaging by orbital assets

October 2007

Second Landing Site Workshop

Select five sites (includes "havens")

August 2008

Third Landing Site Workshop

Recommend Landing Site Zone

June 2019

Fourth Landing Site Workshop

Recommend final ellipse

September 2009

Selection of actual landing ellipse

Based on project and program reviews, NASA

HQ selection

October 2009

Launch

Summary of Workshop Deliverables:

- Did I mention time was tight?
- Completed "Criteria Table for each site
- Compare sites at end of workshop
 - Evaluate consistency and revise as needed
- Discuss and Evaluate Front Runners
- Discuss "safe" and "uber safe" havens
- Recommend Sites
 - Up to five science if also "safe" and "uber safe"
- Discuss distribution wrt latitude bands
- Steering Committee will complete unfinished tasks

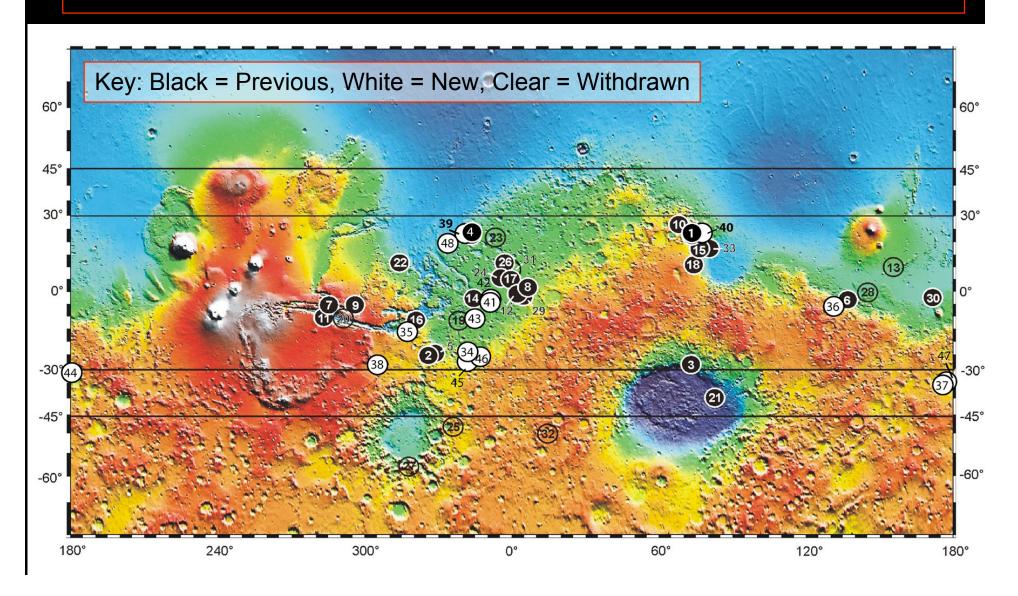

MSL Landing Site Steering Committee Members:

Name	Affiliation			
John Grant*	Smithsonian Institution			
Matthew Golombek*	Jet Propulsion Laboratory			
Ken Tanaka	USGS Flagstaff			
Philip Christensen	Arizona State University			
Dave Desmarais	NASA Ames Research Center			
Doug Ming	NASA Johnson Space Center			
Bruce Jakosky	University of Colorado			
Michael Malin	Malin Space Science Systems			
John Mustard	Brown University			
Richard Morris	NASA Johnson Space Center			
Timothy Parker	Jet Propulsion Laboratory			
Roger Phillips	Washington University			
John Grotzinger	Caltech			
Rich Zurek	Jet Propulsion Laboratory			
Dawn Sumner	UC Davis			
* Co-chairs of the MSL Landing Site Steering Committee				

Landing Site Imaging:

Stunning Contributions from MRO, Odyssey, MGS, and Mars Express Teams

- Existing and new data will be used from the following missions to evaluate the proposed MSL Landing Sites:
 - Existing MGS MOC, MOLA and TES data
 - New and existing Odyssey THEMIS data
 - New and existing Mars Express data (e.g. Omega and HRSC)
- MRO Standardized Observations
 - OHIRISE: 10 km long, 6 km wide; CTX: 30 km², CRISM: 10 km²
 - Initial survey mode, 1 set per site
 - More as appropriate for high priority sites as process develops
 - Addition of new sites (e.g. MRO discoveries)
- Continue concentrated imaging of remaining sites after second landing site workshop (October 2007)



MRO Coverage of Sites:

http://marsoweb.nas.nasa.gov/landingsites/ and http://webgis.wr.usgs.gov/msl

NAME	HiRISE center lat (°N)	HiRISE center long (°E)	Obs ID	Complete?	HiRISE*	CRISM*	CTX*
Nili Fossae Trough	21.14	74.23	4001	Done	Х	Χ	Χ
Holden Crater Fan	-26.44	325.23	3999	Done	Χ	Χ	Χ
Terby Crater	-27.57	74.22	3769	Done	Χ	Χ	Χ
Mawrth Vallis	24.90	340.20	9376	Done	Χ	Χ	Χ
Eberswalde Crater	-23.20	326.76	7094	Done	Х	Χ	Χ
Gale Crater	-4.79	137.42	7034	Done	Χ	Χ	Χ
W Candor	-5.79	284.17	9377	Done	Х	Χ	Χ
N Meridiani	2.37	6.69	3766	Done	Х	Χ	Χ
Juventae Chasma	-4.53	297.87	9379	Done	Х	Χ	Χ
Nilo Syrtis	29.30	73.28	4002	Done	Χ	Χ	Χ
Melas Chasma	-9.81	283.62	3997	Done	Х	Χ	Χ
E Meridiani	0.04	3.63	3765	Done	Х	Χ	Χ
lani chaos	-2.06	342.41	7095	Done	Χ	Χ	Χ
Nili Fossae Crater	18.55	77.49	7096	Done	Χ	Χ	Χ
Eos Chasma	-10.72	321.92	3761	Done	Χ	Χ	Χ
Meridiani Crater Lake	5.47	358.14	7097	Done	Χ	Χ	Χ
NE Syrtis Major	16.46	76.58	7035	Done	Х	Χ	Χ
Margaritifer Basin	-12.95	337.88	3998	Done	Х	Χ	Χ
E Melas Chasma	-11.84	290.82		Done	Х	Χ	Χ
Hellas/Dao Vallis	-39.50	82.70	3752	Done	Х	Χ	Χ
Xanthe/Hypanis Vallis	11.40	314.70	3753	Done	Х	Χ	Χ
Becquerel Crater	21.32	352.52		Done	Х	Χ	Χ
SW Arabia Terra	5.68	355.63		Done	Х	Χ	Χ
W Arabia	8.90	358.95	9386	Done	Х	Χ	Χ
W Meridiani	-1.70	352.39		Done	Х	Χ	
Elysium/Avernus Colles	-3.10	170.70	3754	Done	Χ	Χ	Χ
SML Craters	-49.16	14.51	3720	Done	Х	Χ	
Isidis Basin Escarp	18.00	79.62	3755	Done	Χ	Χ	Χ

Better Definition of Previously Proposed Sites and Identification of Potential New Sites

NUMBER	NAME	LOCATION	ELEVATION	TARGET	PRESENTER
1	Nili Fossae Trough*	20.93°N, 74.35°E	-0.6 km	Phyllosilicates	Jack Mustard
2	Holden Crater Fan	26.32°S, 325.30°E	-2.3 km	Layered Materials	Ross Irwin
3	Terby Crater*	27.7435°S, 74.1137°E	-5 km	Layered Materials	Sharon Wilson
4	Mawrth Vallis	24.65°N, 340.1°E	~-3.1 km	Phyllosilicates	Joe Michalski
5	Eberswalde Crater	23.85°S, 326.75°E	-1.4 km	Delta	J. Schieber
6	Gale Crater*	4.50°S, 137.35°E	-4.5 km	Interior Layered Deposits	Brad Thomson
7	W Candor*	5.80°S, 284.17°E	1.8 km	Sulfate Deposits	Scott Murchie
8	N Meridiani	2.37°N, 6.69°E	-1.5 km	Sedimentary Layers	Mike Malin
9	Juventae Chasma	4.45°S, 298.09°E	-2.8 km	Layered sulfates	Janice Bishop
10	Nilo Syrtis	29.16°N, 72.97°E	~-0.5 km	Phyllosilicates	Jack Mustard
11	Melas Chasma	9.81°S, 283.62°E	-1.9 km	Paleolake	John Grant
12	E Meridiani	0.01N°, 3.66°E	~-1.3 km	Sedimentary Layers	Brian Hynek
13	Athabasca Vallis	9.93N, 156.77°E	-2.4 km	Cerberus Rupes Deposits	Withdrawn
14	Iani Chaos	2.06°S , 342.41°E	Below -2 km	Hematite, sulfate	Tim Glotch
15	Nili Fossae Crater	18.44°N, 77.58°E	-2.6 km	Valley Networks, Delta Sediments	Caleb Fassett
16	Eos Chasma	10.7°S, 322.05°E	~-4 km	Chert	Vicky Hamilton
17	Meridiani Crater Lake	5.72°N, 358.03°E	~-1.5 km	Crater lake sediments	Liliya Posilova
18	NE Syrtis Major	~16.21°N, ~76.63°E	~1 km	Volcanics	Bethany Ehlmann
19	Margaritifer Basin	12.85°S, 338.0°E	-2.1 km	Fluvial Deposits	Withdrawn
20	E Melas Chasma	11.72°S, 290.72°E	Below -2 km	Interior Layered Deposits	Withdrawn
21	Hellas/Dao Vallis	39.5°S, 82,7°E	-6 km	Valley Terminus, Layered Deposits	Larry Crumpler
22	Xanthe/Hypanis Vallis	11.4°N, 314.65°E	-2.6 km	Layered Deposits	Larry Crumpler
23	Becquerel Crater	21.3°N, 352.52°E	-2.6 to -3.8 km	Layered Sedimentary Rocks	Withdrawn
24	SW Arabia Terra	6.01°N, 355.60°E	-1 km	Sedimentary rocks, methane	Carlton Allen
25	Gullies/Wirtz Crater	48.8°S, 335°E	-2.4 km	Gullies	Withdrawn
26	W Arabia	8.45°N, 359.09°E	-1.2 km	Sedimentary Rocks	Linda Kah
27	Argyre	56.8°S, 317.7°E	-1.5 km	Glacial Features	Withdrawn
28	NW Slope Valleys	~0, 145°E	~-2 km	Flood Features	Withdrawn
29	W Meridiani	1.7°S, 352.39°E	~-1.0 to -1.5 km	Sediments, Hematite	Horton Newsom
30	Elysium/Avernus Colles	3.05°S, 170.60°E	-2.5 km	High iron abundance	Larry Crumpler
31	Meridiani Bench	7.5°N, 354°E	~-1 to -1.5 km	Layered Sediments	Withdrawn
32	SML Craters	49.03°S, 14.494°E	Above -0.5 km	Recent Climate Deposits	Withdrawn
33	Isidis Basin Escarp	18.00°N, 79.60°E	-3.5 km	Volatile Sink	

Landing Sites added after 1st workshop

NUMBER	NAME	LOCATION	ELEVATION	TARGET	PRESENTER
34	Samara Vallis	23.55°S, 339.75°E	-1 km	Valley network channel	Mitrofanov
35	Eos Alluvial	13.6°S, 317.5°E	-3.5 km	Alluvial fan	Mitrofanov
36	Aeolis Fan Delta	5.05°S, 132.85°E	-2.2 km	Fan, delta	Mitrofanov
37	Ariadnes Colles	35.03°S, 174.17°E	-0.07 km	Clay-bearing outcrops	Eldar Noe
38	Ritchey Crater	28.28°S, 308.93°E	-1.18 km	Clays, Fan deposit	Ralph Milliken
39	Mawrth Vallis	24.5°N, 338.9°E 23.95°N, 341.2°E 23.2°N, 342.5°E	-3.08 km -2.22 km -2.10 km	Layered clays	J-P. Bibring
40	Nili Fossae	21.8°N, 78.6°E	-1.16 km	Clays, mafics	Nicolas Mangold
41	S. Meridiani Clays	3.35°S, 352.64°E	-1.95 km	Clays, sulfates	Selby Cull
42	W. Meridiani 2	3.01°S, 352.1°E	-1.88 km	Clays, sulfates	
43	Chloride Site 1	11.4°S, 343.4°E	-1.47 km	Chloride salts	Phil Christensen
44	Chloride Site 2	31.5°S, 180.8°E	1.39 km	Chloride salts	Phil Christensen
45	Chloride Site 3	27.9°S, 339.1°E	-0.04 km	Chloride salts	Phil Christensen
46	Chloride Site 4	25.4°S, 346.6°E	-0.04 km	Chloride salts	Phil Christensen
47	Chloride Site 5	34.36°S, 177.76°E	1.37 km	Chloride salts	Phil Christensen
48	Tiu Valles	22.9°N, 327.65°E	~ < -3.0 km	Chemolithotrophic habitat	Felipe Gómez
49	Meridiani Sites				J-P. Bibring

Busy Little Bees:

- First Cut at Engineering Constraints
 - Not set in stone
 - Ensures Completion
 - Uniform initial treatment
- Hazard Mapping
 - Using HiRISE images
- Complete "Criteria Table" for each site
 - Need to discuss in light of above

Holden Crater: psp_005411_1535

- Few to no rocks on plains, lots of ripples
- Some rocks on mounds (red/yellow areas in map on right)

Holden Crater - green

Holden Crater - yellow

Holden Crater - red

Let's Get Started!