

In the beginning there was Type I and Type II

Type 2 – Basaltic Andesite

Type 1 - Basalt

Today ...

Group 1

Group 2

Group 3

Group 4

Pyroxene compositions: TES-OMEGA comparison

Bibring et al., Science, [2005]

Improved libraries of pyroxenes and olivines in the infrared

TES-derived surface abundance of olivine

Olivine Basalt in Eastern Valles Marineris

THEMIS Multi-spectral IR

Granitoid Rocks

Carbonates 1500 cm⁻¹ 1000 cm⁻¹ 500 cm⁻¹ 0.95 Emissivity 0.9 Carbonate Mini-TES **Bound Water** 0.85 **Orbiting MGS/TES** 10 6 24 Wavelength (µm)

Phyllosilicates

Steve Ruff's 465 cm⁻¹ index

Both present = crystalline clay

530 cm⁻¹ index

Salt Sites

Summary

- Knowledge of martian mineralogy from TES and THEMIS data has improved substantially over the past 5 years
- Mars is a volcanic planet with diverse compositions
- Weathering has occurred, but extensive exposures of unweathered rock and regolith are present
 - Water-related environments need to be kept in this context
- Clays (and sulfates) appear from TES and THEMIS data to be present at abundances of <~10%
- Carbonates are present but in dust
- Chloride salts appear to have been detected
- Bedrock is present Mars is still actively (physically) eroding