PROPOSED MARS LANDING SITES FOR MER A & B

West Hemisphere Centered at: 30°N, 30°W East Hemisphere Centered at: 30°N, 210°W

Who: R. Kuzmin, R. Greeley, D. Nelson, J. Farmer, C. Klein

What: Potential sites for the MER-A lander

When: For the 2003 launch opportunity

Where: East end of Valles Marineris

Why: It has a high potential to meet the science objectives

How: SAFELY!

EOS CHASMA MER-A Site

GENERAL GEOLOGY, EOS SITE (Scott & Tanaka,1986)

Scientific Characteristics

- Major Hesperian-age channel system
- Chaotic terrain source (sub-surface water + local ponding?)
- Associated with Valles Marineris (tectonic, hydrothermal activity?)

It is an excellent candidate site for "ancient groundwater" environments

LOCAL GEOLOGY (Witbeck et al., 1991)

Site Characteristics

- Location: 13.5°S, 41.5°W; -3.5 km elevation,
 56 km ellipse @ 66° azimuth
- TES thermal inertia (3 km footprint) = medium to coarse sand
- Albedo = 0.13 to 0.20 suggests little dust
- Viking IRTM suggests 10 to 20 % "rocks"
- Radar (low resolution; Harmon et al., 1992)
 0.05 to 0.08 @ 12.5 cm wavelength
 0.05 to 0.06 @ 3.5 cm wavelength

MER-A Science Potential

- Characterize rocks and minerals derived from groundwater, fluvial, and lacustrine environments
 - primary rocks and minerals (composition and texture) alteration products (test hydrothermal hypothesis, etc.)
- Determine surface geology (fluvial, aeolian, mass-wasting, etc. processes)
- Study near-surface stratigraphy exposed locally (e.g., in small crater walls)
- Assess stratigraphy of channel walls (~100 pixels high)