

MSL Project Status and Landing Site Selection Schedule

Michael Watkins
MSL Mission Manager

On behalf of MSL project, especially Mission Design/Navigation Team: L. D'Amario et al.

EDL Team: A. Steltzner et al.

Flight System: M. Wallace/H. Eisen et al.

Project Status

- Significant progress on major spacecraft components
 - MSL is really 3 spacecraft
 - · Cruise stage
 - Descent stage
 - Rover
- Significant progress on instruments
 - MARDI delivered (DAN in transit)
 - All others coming soon (by Dec 08/Jan 09)
- Major flight and ground software deliveries
 - Support critical system testing and preparing for cruise activities
- Lots of work to go, especially in system integration, the system level test program, and software development

System Integration and Test

AEGSE: Single Slice Rack

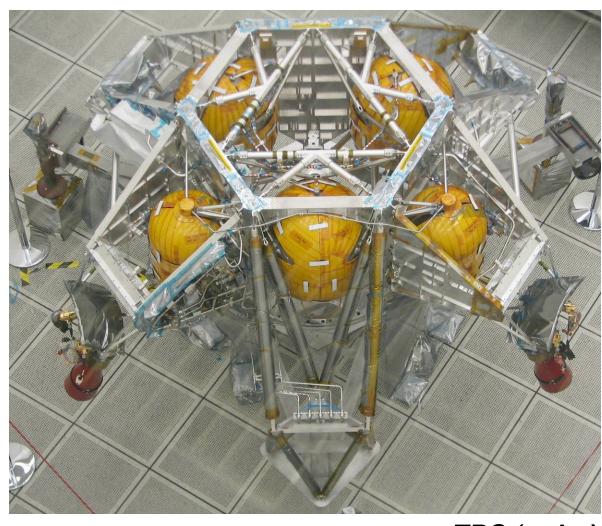
STB: FS SDST

ATLO: SCARF w/ Cradle & Motor Installed

ATLO: FM RPAM-A (covered) & RPAM-B

Cruise Stage

d


Descent Stage Prop Integration In-progress

Jet Propulsion Laboratory

Mars Science Laboratory Project

Propellant Tanks (x3)

Pressurant Tank (x2)

PCA

MLE

Service Valves

TDS (radar) Truss

.


SAM Suite in Clean Room

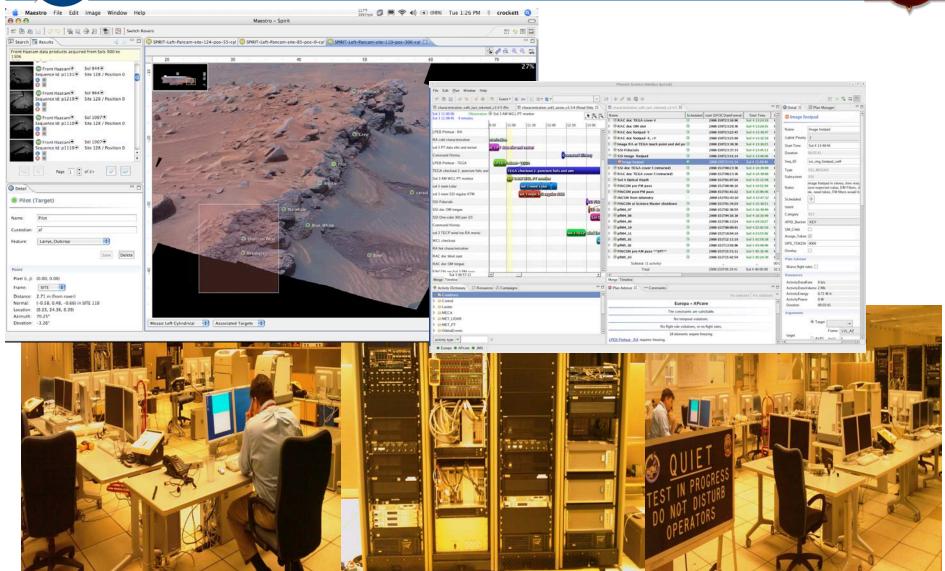
Jet Propulsion Laboratory

Mars Science Laboratory Project

QMS

RF Electronics

TLS


SMS cover

0

Ground System

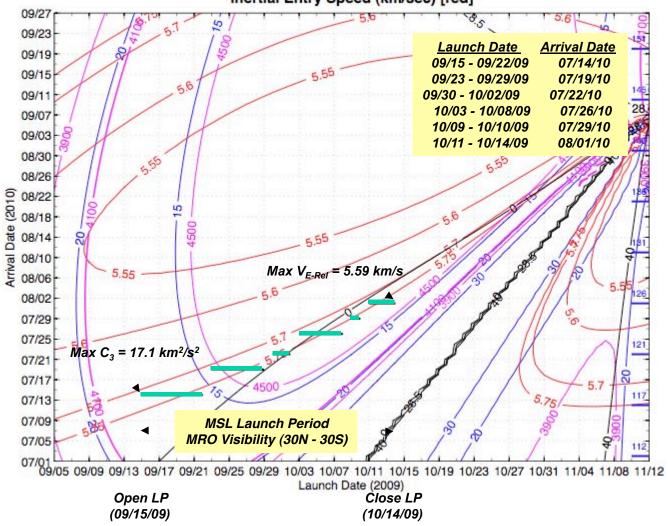
Jet Propulsion Laboratory

Important Change (for the better) since 2nd Workshop (and Dec. 4th Morning After)

- Based on improved UHF link analysis from trajectory and telecom, we were able to merge the multiple target specs (each covering specific latitude bands) into a single target spec covering 30N-30S
 - All current candidate sites reachable with in-flight retarget beginning at TCM-1 from central launch vehicle target
 - Considerably simplifies targeting and backup site strategy
 - No hemispheric or band-specific backups needed
 - There is a single launch period but still multiple arrival dates

Jet Propulsion Laboratory

Status – Launch/Arrival Strategy



Mars Science Laboratory Project

LABORATORY

2009 Earth to Mars Opportunity

C3 (km²/sec²) [blue], DLA (deg) [black], Atlas V 541 Cap. (kg) [magenta], Ls (deg) [blue-bold] Inertial Entry Speed (km/sec) [red]

Project Technical Status Related to Landing Site Selection

Jet Propulsion Laboratory

- Acquiring orbiter and atmospheric model data sets
 - Examples: Mono and stereoHiRISE and CTX images, MCS, CRISM, GCMs, site dependent mesoscale atmospheric models
 - Tremendous support from MRO project and science team, and CDP team
- Processing data sets into usable products (more from Golombek+posters)
 - Digital terrain models at the 1m scale, rock counts, formatted atmospheric density maps, winds, etc
- Use of these products in detailed site by site engineering performance and safety analyses
 - Processing information currently available on site environments against system performance parameters
- Motor actuator heaters have been incorporated to best extent possible in rover design

Current Status on Site Evaluation

Jet Propulsion Laboratory

Mars Science Laboratory Project

EDL Safety:

- Preliminary analysis complete
 - Atmospheric conditions including winds
 - Terrain affecting radar/powered descent (100-1000 m scales) over full ellipses
 - Rover-scale touchdown slopes (2-5 m scales) for a subset of the terrain (data availability)
 - Rock density for a subset of the terrain (data availability)
- All current site candidates acceptable at ">95% success level"
 - Site to site variability in success level is small and is outweighed by remaining uncertainties

Surface Performance:

- Preliminary work suggests
 - Motor actuator low temperature torque performance, and energy use for heaters finds all current sites meet at least Level-1 science rgmts
 - We don't know the second digit of rover science efficiency yet pending additional results based on flight model actuators, and site by site mobility assessment

All sites are currently acceptable to project

Engineering not a discriminator at this workshop

Upcoming Engineering Analysis

- Additional site coverage
 - More high resolution DTM's and rock hazard maps covering full ellipses and selected go-to areas
- Tuning of system "knobs" to improve performance
 - More data on rover touchdown capability from test program, more highly specific EDL simulations
 - Preliminary assessments available by late 10/08
 - Continuing in excruciating detail for site finalists
- Additional test data on actuator torque margin at low temperature, impacts on lifetime, effect of gradient heating
 - Flight actuators available for test next month, thermal gradient tests by end of CY08
- Additional analyses of "Go-To" traverses
 - Rover planners brought on board, first order analysis of each site by late 10/08
 - Detailed analyses on finalists

Landing Site Selection Remaining Major Events

(excludes internal/subsystem reviews and ongoing meetings)

Jet Propulsion Laboratory

- Third Community Workshop 9/15-17/08
 - Heavily science focused
- "Morning After II" Late Oct/Early Nov 08
 - Project + PSG +Reps from external science community
 - Combine current engineering assessments on site by site basis with science rankings
 3 finalists for highly detailed final study
- Brief HQ on status ~11/08
- Engineering Assessment Status Workshop 1/09
 - Status detailed engineering assessment, special attention on actuators/traverse
- Fourth Community Workshop Early 4/09
 - Final science assessment of site candidates
- EDL Landing Site Safety Review Early 4/09
 - Detailed site by site EDL engineering risk assessment
- Project Final Landing Site Selection Meeting 4/09
 - "Final" convolution of detailed engineering (EDL and traverse) and science assessment
 - => Recommended site ranking from Project
- Independent Certification Review ~5/09
- Brief HQ ~6/09
 - final site approval