Beyond the Hematite: More Reasons To Visit Meridiani

> Wendy Calvin, Alicia Fallacaro (UNR) Alice Baldridge (ASU)

Supported by NASA EPSCOR, PGG, MER-PS

Overview

- Mariner 6/7 IRS, Locations, footprint
- Hydration of hematite sites (Meridiani and Aram!)
- Methods
- Amount of Water
- Synthesis 0.4 to 50 μm
- Alteration Analogs
- Astrobiology Potential
- Hypothesis Testing

Mariner 6/7 IRS: 1969 Flybys

- Mariner 6: 2-6μm, 2 segments
- Mariner 7: 2-6μm; 5-15μm, 4segments
- Footprint 100km x 200km
- Both crossed the Meridiani Site. M6 crossed the Aram site. Neither covered W Candor site.

Where was/is the water?

- Early M6 analysis shows some low albedo regions more hydrated.
- Noted correlation with classic low albedo regions and drainage density
- Proposed a model of dark alteration consistent with ISM/IRS spectra.

Determining Hydration State

- Normalized, Integrated Band Depth
- Convert data to radiance
- Calculated I/F where
 F=solar+planck fit, divided
 by cos(i) cos(e)
- Merge wavelength segments
- Integrate 3 μm band depth and divide out albedo at both 2.2 μm and 4 μm.

Hydration Clusters

- Compare NIBD with albedo, incidence, emission angles
- High hydration, low albedo
- Mid hydration, moderate albedo
- Low hydration, low albedo
- Remnant high incidence, emission angle effects

Hydration of Aram Chaos

Strong correlation of hydration and hematite.

Hydration of Meridiani

 Precise correlation between increased hydration and mapped hematite boundaries.

Mariner 7 over Meridiani

- 3µm also show increased band depth.
- Thermal wavelengths consistent with more water in surface minerals.
- Need to look at TES at the short wavelengths.
- Better data with mini-TES

How much water is there?

- Little systematic work on 3-μm band strength and amount of water.
- Grain size and albedo can be important.
- Miyamoto and Zolensky (1994) showed linear correlation between integrated band depth and bulk H in C-chondrites.
- Yen et al. (1998) showed apparent absorbance method works well for constant albedo, grain size.
- Based on apparent absorbance Mariner data suggest
 2% additional water by weight at hematite sites.
- As the average is inferred to be only 1-2% this is a significant local increase in water bound in minerals.
- GRS also supports broad regional hydration at Meridiani. The hematite sites may be small surface expression of a more extensive global layer at depth.

Spectral Properties 0.4 to 50µm

- TES shows bulk hematite, but no strong variation in Si signature from 8-12 μm.
- Mariner shows increased hydration at 3-μm and from 5 to 7μm.
- Subtle variation in 1-μm "pyroxene" band.
- Hematite is not hydrated
- So what is?
- Oxy-hydroxides, Sulfates, Carbonates, Ferrous Silicates.

Where's the Water? Dark Alteration Analogs

Facies	Archean Iron Formation	Carbonaceous Chondrites
Oxide	Magnetite/Hematite	Magnetite, Fe-oxy-hydroxides
Sulfide	Pyrite	Fe,Ni Sulfides, Tochilonite
Silicate	Greenalite, Stilpnomelane	Cronstedtite, Greenalite
	Chamosite, Minnasotaite	Antigorite, Chrysotile
Carbonate	Siderite	(none/minor)
	carbonaceous cherts are also found in Archean deposits	carbon forms a detrital carbonaceous matrix

Banded Iron Formation

- Shallow marine vs Deep Sea
- Dominant in rock record before ramp up in atmospheric O₂
- Gradations among facies endmembers

BIF-Oxide & Carbonate

Ferrous Silicates

- Common in C-chondrite matrix
- BIF silicate facies
- Model shows nice fit to ISM/IRS data, especially 1-µm band.
- No strong features 8-12 μm
- Need measurements at long wavelengths.

Other options

- Sulfates
- Acid Gels
- Carbonates
- Ferrous Silicate

Astrobiology Implications

- Role of biological precipitation in BIF
- Presence of organic signatures in Cchondrites (amino acids)
- If hematite locations reflect this kind of alteration scenario, potential for associated organics could be high.

> 4.5 Ga		3.4 Ga	
C-Chondrites	Mars Hematite?	BIF	
Pre-Biotic Chemistry		Life	

Hypothesis Testing

- Water WAS involved in the formation of the hematite regions.
- In all cases: What carries the water?

Dark Alteration Model

- Sub-aqueous origin (BIF analog). Look for: Layers, other facies, C in carbonate or carbonaceous cherts, sedimentary structures
- Ground water interaction (C-chondrite analog). Look for: minerals intermixed on very small scale, C in carbonaceous detritus
- Look for sulfides (though not source of hydration)

Hypothesis Testing - 2

- If H₂O is in other oxy-hydroxides says something about history and duration of alteration event.
- Mossbauer, mini-TES and PanCam all needed to unambiguously resolve auxiliary minerals.

From Here to There

Work in the Interim to assist with MER

- Characterize ferrous clays to 50µm, also w/ Mössbauer, Fe³⁺/Fe²⁺
- More naturally occurring hematites
- BIF Carbonate composition
- TES < 8 μm</p>